Minggu, 09 Desember 2012

Contoh Soal Matematika BAB Peluang Beserta Jawaban

Nah. karena kemarin-kemarin aku disuruh ngerjain tugas matematika, disuruh cari soal matematika bab peluang di internet ... bingung juga sih carinya ..makanya karena udah ketemu sekalian aja deh buat ngisi blog gw yang kosong ini hehehe ...
nih soalnya..


1. Peluang seorang anak terkena suatu penyakit adalah 0,15 . Jumlah anak dari 1000 anak yang diperkirakan tidak terkena penyakit itu adalah …..
      a. 150 orang          c. 850 orang
      b. 15 orang            d. 85 0rang
jawab :
D1 : A = kejadian seorang anak terkena suatu penyakit
       N = 1000
D2 : fh(A) ….. ?
D3 :
P(seorang anak terkena suatu penyakit) = 0,15
P( seorang anak tidak terkena suatu penyakit ) = 1 – P(seorang anak terkena penyakit)
                                                                                          = 1 – 0,15
                                                                                          = 0,85
Fh(A) = p(A) x N
            = 0,85 x 1000
            = 850
Jadi , anak yang diperkirakan tidak terkena penyakit adalah 850 orang

2.                  Pada pelemparan sebuah dadu peluang muncul mata dadu ganjil adalah...
a.      b.     c.     d.1
s={1,2,3,4,5,6}       n(s)=6
A=Muncul mata daduganjil
A={1,3,5}      n(a)= 3
P(a)=
      =
               jadi peluang muncul dadu bermata ganjil adalah     
3.                  Dari satu pak kartu brigde diambil kartu secara acak .peluang kartu tersebut merupakan as adalah..
a.   b.   c.    d.
n(s)=52
A=kartu as
A={as  ,as  ,as  ,as  } n(a)=4
P(a)=
      =
      =
Jadipeluang munculnya kartu as adalah
4.                  Dari seperangkat kartu dilakukan pengambilan secara acak sebanyak 260kali dan setiap kali pengambilan kartu dikembalikan,berapa frekwensi harapan yangterambil kartu as?
a.5kali               c.40 kali
b.20kali             d.60kali
A=muncul kartu as
A={as  as  as  as  }
N=260 kali
P(a)=
      =
      =

f(h)=p(a)Xn
      = x260
      =20
Jadi frekwensi harapan tersebut adalah 20

5.                  Pada pelemparan mata uang dan dadu peluang munculnya gambar dan angka 4 adalah..
s={(a,1),(a,2),(a,3),(a,4),(a,5),(a,6), (g,1),(g,2),(g,3),(g,4),(g,5),(g,6)}
A=gambar dan angka4
A=(g,4)
P(a)=
      =
     Jadi peluang muncul angka4 dan gambar adalah



6.                  Tiga keping mata uang logam yang sama dilempar
bersama-sama sebanyak 40 kali. Frekuensi harapan agar
munculnya 2 gambar di sebelah atas adalah ...
A. 10
B. 20
C. 25
D. 15

JAWAB :
P(dua gambar satu angka) = 1/4,  maka
Fh = P(A) x banyak percobaan
      = 1/4 x 40
      = 10 (A)
7.                  Dari 60 kali pelemparan sebuah dadu, maka frekuensi
harapan munculnya mata dadu faktor dari 6 adalah …
A. 10 kali
B. 20 kali
C. 30 kali
D. 40 kali

JAWAB :
P(faktor dari 6) =   =  maka
Fh = P(A) x banyak percobaan
      = 2/3 x 60
      = 40 (D)
8.                  Dari 900 kali percobaan lempar undi dua buah dadu
bersama-sama, frekuensi harapan muncul mata dadu
berjumlah 5 adalah …
A. 300
B. 225
C. 180
D. 100
JAWAB :
P(mata dadu berjumlah 5) = 4/36 = 1/9 maka
Fh = P(A) x banyak percobaan
      = 1/9 x 900
      = 100 (D)
9.                  Jika sebuah dadu dilempar 36 kali, maka frekuensi
harapan muncul mata dadu bilangan prima adalah …
A. 6 kali
B. 12 kali
C. 18 kali
D. 24 kali
JAWAB :
P(bilangan prima) = ½ maka
Fh = P(A) x banyak percobaan
      = ½  x 36
      = 18 (C)
10.              Sebuah kantong berisi 100 kartu yang diberi nomor 2 sampai dengan 101. Sebuah kartu diambil secara acak dari kantong itu. Tentukan peluang terambil kartu yang merupakan bilangan kuadrat ?
A.
B.
C.
D.
JAWAB :
n(S) = 100
A = kejadian terambil kartu bilangan kuadrat
= {4,9,16,25,36,49,64,81,100}
n(A)= 9
Sehingga p(A) =     =    (B)
11.              Sebuah dadu di lempar  1 kali . tentukan peluang muncul angka ganjil !
a. 1    b.      c.3    d.
penyelesaian
S = { 1 , 2 , 3 , 4 , 5 , 6 }  n(S) = 6
Jika A kejadian munculnya angka ganjil maka :
A = { 1 , 3 , 5 }  n(A) = 3
P (A) =
          =  =
Jadi angka ganjil tersebut adalah
12.              dua uang logam dilempar  satu kali peluang muncul angka ganjil !
a.     b.     c.     d.
penyelesaian
S = {AA , AG , GA , GG}  n (S) = 4
Jika B kejadian  muncul keduanya angka maka
B = {AA}  n(B) = 1
P(B) =  =
Jadi  angka ganjil tersebut adalah
13.              sebuah kantong berisi 5 kelereng merah dan 6 kelereng biru . satu kelereng di ambil secara acak .peluang terambilnya kelereng berwarna biru adalah
a. 11    b. 6    c.     d.
penyelesaian
S : jumlah seluruh kelereng  n (S) = 11
jika  C kejadian  terambilnya kelereng biru maka  n (C) = 6 
P(C) =  =
Jadi peluang terambilnya dadu berwarna biru adalah
14.              sebuah dadu  di lempar sebanyak 50 kali . frekuensi harapan munculnya mata dadu genap adalah
a. 22    b. 24    c. 25    d. 26
penyelesaian
S = { 1 , 2 , 3 , 4 , 5 , 6 }  n ( S ) = 6
A = { 2 , 4 , 6 }  n (A ) = 3
P ( A ) =
Fn = P( A ) x n
     =
 x 50 = 25
Jadi frekuensi harapan munculnya mata dadu genap adalah 25
15.              1 buah dadu di lempar  1 kali peluang  muncul mata dadu  berjumlah 10 adalah
a.30    b.56    c.     d. 3
penyelesaian
 himpunan mata dadu berjumlah 10 adalah
{( 4 , 6 ) , ( 5 , 5 ) , ( 6 , 4 )}
P (A) =
Jadi muncul mata dadu  berjumlah 10 adalah

16.              Sebuah dadu dan sebuah mata uang logam di lantunkan bersama . tentukanlah P(5,A)!
(A).                            (B).                          (C).                          (D).       

Penyelesaian :
A = Sebuah dadu dan sebuah mata uang logam yang di lantunkan bersama.
           
Mata uang / Dadu
A
G
1
(1,A)
(1,G)
 2
(2,A)
(2,G)
3
(3,A)
(3,G)
4
(4,A)
(4,G)
5
(5,A)
(5,G)
6
(6,A)
(6,G)
S = { (1,A), (2,A), (3,A), (4,A), (5,A), (6,A), (1,G), (2,G), (3,G), (4,G), (5,G), (6,G).
             n(s) = 12
A      = munculnya (5,A)
n(A) = 1
P(A) =

       =
17.              Peluang seorang anak terkena penyakit demam adalah 0,40. Berapa peluang seorang anak tidak terkena penyakit demam?
(A). 1,5                        (B). 2,6                        (C). 1,2             (D). 0,6

Penyelesaian :
 P(tidak terkena penyakit demam)                 =  1 – P(terkena penyakit demam)
                                                                        =  1 – 0,40
                                                                        =  0,6

18.              Dalam setiap hari diperkirakan bahwa kemungkinan seorang anak terlambat masuk les adalah 0,05. Dari 300 anak berapa anak, diperkirakan terlambat les ?
(A). 15                         (B). 10                         (C). 30                          (D). 25

Penyelesaian :
     D1 :  A        = Banyak anak diperkirakan terlambat les
              P(A)   = 0,05
              N        = 300
     D2 : Fh (A) = ?
     D3 :
      Fh(A)          =  P(A)
× N
                        =  0,05 × 300
                        =  15
Jadi, banyaknya anak yang di perkirakan terlambat les adalah 15 anak

19.              Sebuah bak berisi 13 bola berwarna kuning, 9 bola berwarna ungu, dan 14 bola berwarna pink. Pada pengambilan secara acak, tentukanlah peluang yang terambil pada bola yang berwarna pink .
(A).                     (B).                     (C).                     (D).        

Penyelesaian :
            A =  Peluang yang terambil
            P(A)     =                              
            =
 =  
Jadi, peluang yang terambil pada bola berwarna pink adalah                    

20.              Pada percobaan melantunkan dua dadu secara bersama, tentukanlah banyaknya anggota titik sampelnya .
(A). 20                         (B). 26                         (C). 30                          (D). 36

Penyelesaian :
Dadu / Dadu
1
2
3
4
5
6
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
2
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)
4
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
(4,6)
5
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
(5,6)
6
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
S ={(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}.
n(S) = 36
jadi, banyak anggota titik sempel pada tabel diatas adalah 36. 




agak ribet kan... kalau ingin download  silahkan aja
format via docx
 

14 komentar:

  1. Makasih min udah share! Kebetulan saya lagi nyari soal2 matematika...

    BalasHapus
  2. terima kasih.. bagus utk ulangan besok nih

    BalasHapus
  3. izin copy paste yah
    makasih.... ^_^

    BalasHapus
  4. izin copy paste ya,.,.. terimaksih.. benefit banget..

    BalasHapus
  5. terimakasih yaa, sangat membantu untuk pr besok:)

    BalasHapus
  6. makasi gan, kalo bisa diperbanyak lagi posting soal2 kyk beginian,.... salam bloger

    BalasHapus
  7. kebetulan aku kena remidi MTK,disuruh buat 5 soal yg berhubungan dgn Peluang,aku izin makek ya.....

    BalasHapus
  8. terimaksih admin artikel tentang peluangnya, sumber referensi yang bagus

    BalasHapus
  9. ada beberapa soal yang salah, bahaya nih kalo mau posting dicek dulu dong...

    :D

    BalasHapus
  10. makin pusing -___-

    BalasHapus
  11. Ada soal yg ngaur, gimana ada angka ganjil dalam pelemparan koin?

    BalasHapus
  12. ulangan soalnya great nih buat belajar

    BalasHapus